Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
نویسندگان
چکیده
The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2 ) and Na(+) transport efficiency (TNa/QO2 ). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na(+)/H(+) exchangers (NHE) and Na(+)-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1-S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2 , as well as Na(+) transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2 ; these effects were relatively more pronounced in the S3 vs. the S1-S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2 , owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2 , and Na(+) transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered.
منابع مشابه
CALL FOR PAPERS Renal Hypoxia Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition
Anita T. Layton, Volker Vallon, and Aurélie Edwards Department of Mathematics, Duke University, Durham, North Carolina; Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California, and San Diego Veterans Affairs Healthcare System, San Diego, California; and Sorbonne Universités, Université Pierre et Marie Curie (UMPC) 06, Université Paris Descartes, Sorbon...
متن کاملPredicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.
Diabetes increases the reabsorption of Na(+) (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption [Formula: see text] along...
متن کاملRenal transplantation modulates expression and function of receptors and transporters of rat proximal tubules.
Kidney transplantation often leads to disturbances of solute and volume maintenance in humans. To investigate underlying mechanisms, expression and function of renal transporters and receptors of the proximal tubule (PT) were analyzed in an acute rejection model of rat kidney transplantation. Semiquantitative RT-PCR and Western blot, histology, immunohistochemistry, and microfluorometry were pe...
متن کاملKidney oxygen consumption, carbonic anhydrase, and proton secretion.
Oxygen consumed by the kidney (Q(O(2))) is primarily obligated to sodium reabsorption (T(Na)). The relationship of Q(O(2)) to T(Na) (Q(O(2))/T(Na)) may be altered by hormones and autacoids. To examine whether Q(O(2))/T(Na) depends on the mechanism of sodium reabsorption, we first evaluated the effects on Q(O(2)) and Q(O(2))/T(Na) of benzolamide (BNZ), a proximal diuretic that works by inhibitin...
متن کاملSodium glucose cotransporter 2 and the diabetic kidney.
PURPOSE OF REVIEW Reabsorption of glucose in the proximal tubule occurs predominantly via the sodium glucose cotransporter 2 (SGLT2). There has been intense interest in this transporter as a number of SGLT2 inhibitors have entered clinical development. SGLT2 inhibitors act to lower plasma glucose by promoting glycosuria and this review aims to outline the effect on the diabetic kidney of this h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 308 12 شماره
صفحات -
تاریخ انتشار 2015